In a certain G.P. if S6=126 and S3=14, then find a and r.
Open in App
Solution
S6=126 and S3=14
We know that, for a G.P., Sn=a(rn−1)r−1 ∴S6=a(r6−1)r−1 ∴126=a(r6−1)r−1 ......(1) and S3=a(r3−1)r−1 ∴14=a(r3−1)r−1 .......(2) Dividing (1) by (2), we get 12614=a(r6−1)r−1÷a(r3−1)r−1 ∴12614=a(r6−1)r−1×r−1a(r3−1) 9=r6−1r3−1 9=(r3−1)(r3+1)(r3−1) ∴9=r3+1 r3+1=9 r3=9−1 r3=8 ∴r=2 ............(taking cube roots on both side) ∴14=a(23−1)2−1 ...........[Putting r=2] 14=a(8−1)1 7a=14 ∴a=147 ∴a=2 ∴a=2,r=2.