In a circle of radius 17 cm, two parallel chords are drawn on opposite side of a diameter. This distance between the chords is 23 cm. If the length of one chord is 16 cm then the length of the other is
The correct option is B 30 cm
Given: Radius of the circle = 17 cm
Distance between the two parallel chords = 23 cm
AB||CD and LM = 23 cm
Join OA and OC.
∴OA=OC=17 cm
Let OL = x cm, then OM = (23 - x) cm
AB = 16 cm
Now in right ΔOAL, OA2=OL2+AL2
⇒(17)2=x2+AL2⇒289=x2+AL2
⇒x2=289−AL2=289−(162)2
=289−64=225=(15)2
∴x=15 cm
and OM = 23 - x = 23 - 15 = 8 cm
Now in right ΔOCM, OC2=OM2+CM2
⇒(17)2=(8)2+CM2⇒289=64+CM2
⇒CM2=289−64=225=(15)2
∴ CM=15cm
CD=2×CM=2×15=30cm