In a circle of radius 17 cm, two parallel chords of lengths 30 cm and 16 cm are drawn.
Prove that:(i)
Radius of the circle C = 17 cm
Length of chord AB = 30 cm
Length of chord CD = 16 cm
Draw OM ⊥ AM and OP ⊥ CD and join OA and OC.
∵ The perpendicular from O, bisects the chord,
∴ AM=302=15 cm and CP=162=8 cm
In right Δ OAM,
OA2=OM2+AM2
⇒ (17)2=OM2+152⇒ 289=OM2+225
⇒ OM2=289−225=64=(8)2
∴ OM = 8 cm . . . (i)
(ii)
In right Δ OCP,
OC2=OP2+CP2
⇒ (17)2=OP2+(8)2⇒ 289=OP2+64
∴ OP2=289−64=225=(15)2
∴ OP = 15 cm. . . .(ii)
Now in figure (ii) PM = OP - OM = 15 - 8 = 7 cm
and figure (i) PM = OP + OM = 15 + 8 = 23 cm