We have:
(i)
Let AB and CD be two chords of a circle such that AB is parallel to CD on the same side of the circle.
Given: AB = 8 cm, CD = 6 cm and OB = OD = 5 cm
Join OL and OM.
The perpendicular from the centre of a circle to a chord bisects the chord.
∴ LB=AB2=82=4 cm
Now, in right angled ΔBLO, we have:
OB2 = LB2 + LO2
⇒ LO2 = OB2 − LB2
⇒ LO2 = 52 − 42
⇒ LO2 = 25 − 16 = 9
∴ LO = 3 cm
Similarly, MD=CD2=62=3 cm
In right angled ΔDMO, we have:
OD2 = MD2 + MO2
⇒ MO2 = OD2 − MD2
⇒ MO2 = 52 − 32
⇒ MO2 = 25 − 9 = 16
⇒MO = 4 cm
∴ Distance between the chords = (MO − LO) = (4 − 3) cm = 1 cm
(ii)
Let AB and CD be two chords of a circle such that AB is parallel to CD and they are on the opposite sides of the centre.
Given: AB = 8 cm and CD = 6 cm
Draw OL ⊥ AB and OM ⊥ CD.
Join OA and OC.
OA = OC = 5 cm (Radii of a circle)
The perpendicular from the centre of a circle to a chord bisects the chord.
∴ AL=AB2=82=4 cm
Now, in right angled ΔOLA, we have:
OA2 = AL2 + LO2
⇒ LO2 = OA2 − AL2
⇒ LO2 = 52 − 42
⇒ LO2 = 25 − 16 = 9
∴ LO = 3 cm
Similarly, CM=CD2=62=3 cm
In right angled ΔCMO, we have:
OC2 = CM2 + MO2
⇒ MO2 = OC2 − CM2
⇒ MO2 = 52 − 32
⇒ MO2 = 25 − 9 = 16
∴ MO = 4 cm
Hence, distance between the chords = (MO + LO) = (4 + 3) cm = 7 cm