In a circle of radius 5 cm and centre O, AB and AC are two chords such that AB = AC = 6 cm. AO is the perpendicular bisector to BC. Find the length of the chord BC.
9.6 cm
Given, AO is the perpendicular bisector of chord BC i.e, PC = PB. Join O and C
In △ACP,
AC2=PC2+AP2
⇒PC2=AC2−AP2
⇒PC2=(6)2−AP2
⇒PC2=36−AP2…(1)
In △POC,
PC2=OC−OP2
⇒PC2=OC2−(AO−AP)2
⇒PC2=(5)2−(5−AP)2
⇒PC2=25−(25+AP2−10AP)
⇒PC2=10AP−AP2…(2)
From (1) and (2),
36−AP2=10AP−AP2
⇒AP=3.6 cm…(3)
Substituting (3) in (1),
PC2=36−(3.6)2
⇒PC2=36−12.96
⇒PC2=23.04
⇒PC=4.8
Hence, length of the chord BC=2PC=9.6 cm