In a coaxial, straight cable, the central conductor and the outer conductor carry equal currents in opposite direction. Where the magnetic field will be zero ?
A
outside the cable
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
inside the inner conductor
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
inside the outer conductor
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
in between the two conductors
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A outside the cable A coaxial cable consists of a long cylindrical copper wire of radius r1 surrounded by a cylindrical shell of inner radius r2 and outer radius r3 . The wire and the shell carry equal and opposite currents I uniformly distributed over their volumes. The magnetic field lines are circles, centered on the symmetry axis of the coaxial cable. Consider an integration path with r >r3. The path integral of B along this path is equal to ∫→B.→dl=2πrB=μ0I The current enclosed by an integration path with a radius r > r3 is equal to zero (since the current in the wire and in the shell are flowing in opposite directions). The magnetic field in this region is therefore also equal to zero.