Let y be the number of bacteria at time t
It is given that
dyatα y
dydt=μy
dyy=μat
Integrating both sides [∫dyy=logy]
logy=μt+c−−−(1)
When t=0,t=1,00,000
When t=2hoursey=1,00,000+10100×1,00,000=1,10,000
Now when t=0,y=1,00,000 put in equatin (1)
log1,00,000=μ×0+c
⇒c=log1,00,000
Now puting c=log1,00,000 in (1) we have
logy=μ+log1,00,000−−−(2)
Now when t=2,y=1,10,000, put in (2)
log1,10,000=2μ+log1,00,000
log(1,10,0001,00,000)=2μ[logn−logm=lognm]
⇒μ=12log(1110)
Now finding t when bacteria=2,00,000
log2,00,000=12log(1110)t+log(1,00,000)
log(2,00,000)1,00,000=12log(1110)t
log2=12log(1110t)
t=2log2log(1110)=14.54 hours