In a cyclic quadrilateral ABCD;a,b,c,d being the lengths of sides AB,BC,CD,DA respectively and s is semi-perimeter of quadrilateral, then the value of tan2B2 is equal to
A
(s−a)(s−b)(s−c)(s−d)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
(s−a)(s−c)(s−b)(s−d)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(s−a)(s−d)(s−b)(s−c)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A(s−a)(s−b)(s−c)(s−d) from △ABC,we get AC2=a2+b2−2abcosB⋅⋅⋅⋅⋅⋅⋅⋅(i) and from △ADC we have, AC2=c2+a2−2cdcosD =c2+d2−2cdcos(180∘−B) AC2=c2+a2+2cdcosB⋅⋅⋅⋅⋅⋅⋅⋅(ii) from (i) and (ii) cosB=a2+b2−c2−d22(ab+cd) Now since,tan2B2=1−cosB1+cosB tan2B2=2(ab+cd)−(a2+b2−c2−d2)2(ab+cd)+(a2+b2−c2−d2) =(c+d)2−(a−b)2(a+b)2−(c−d)2 =(c+d+a−b)(c+d−a+b)(a+b−c+d)(a+b+c−d) =(2s−2b)(2s−2a)(2s−2c)(2s−2d)=(s−a)(s−b)(s−a)(s−c)[sincea+b+c+d=2s] tan2B2=(s−a)(s−b)(s−d)(s−c)