In a cyclic quadrilateral ABCD, ∠=(2x+4)o, ∠B=(y+3)o,∠C=(2y+10)o and ∠D=(4x−5)o, then find out the angles of quadrilateral.
∠A=(2x+4)o and ∠B=(y+3)o
∠C=(2y+10)o and ∠D=(4x−5)o
In a cyclic quadrilateral, we have
∠A+∠C=180o
2x+4+2y+10=180o or 2x+2y=166
x+y=83 ......(i)
and ∠B+∠D=180o
y+3+4x−5=180
4x+y=182 ........(ii)
x+y=83
4x+y=182
-------------------
−3x=−99
x=33
Substitute x=33 in equation (i), we get
y=50
So, ∠A=(2x+4)o =(2×33+4)o=70o
∠B=(y+3)o=(50+3)o=53o
∠C=(2y+10)o=(2×50+10)o=110o
∠D=(4x−5)o=(4×33−5)o=127o