In a cylinder, 2.0moles of an ideal monatomic gas initially at 1.0×106Pa and 300K expands until its volume doubles. Compute the work done if the expansion is isothermal, adiabatic and isobaric.
Open in App
Solution
Let P1=1.0×106Pa=106N/m2; T1=300K; n=2moles. Finalvolume=2(initialvolume)⟹V2=2V1 W(isothermal)=2.303nRTlog(V2V1) ⟹W=2.303×2×8.3×300log2 W=3452J W(adiabatic)=nR(T1−T2)γ−1 For adiabatic process: T1V1γ−1=T2V2γ−1 T2=T1=(V2V1)γ−1=300×(12)(53)−1⟹T2=189K W=nR(T1−T2)γ−1=2×8.3×(300−189)(53)−1⟹W=2764J W(isobaric)=P(V2−V1)⟹P1V1=nRT1 V1=nRT1P1=2×8.3×300106⟹V1=4.98×10−3m3 W=P(V2−V1)=P(2V1−V1)=PV1 ⟹W=106×4.98×10−3J⟹W=4980J