In a ΔABC,∠A=120∘. The bisector of A cut BC at point D, such that length of BD is twice of CD. If AD=10 unit and BC=k√7 unit, then value of k is
Open in App
Solution
LetCD=a⇒BD=2aand∠ADC=xApplying sine law inΔACD,ACsinx=asin60∘...(1)Applying sine law inΔABD,ABsin(180−x)=2asin60∘⇒ABsinx=2asin60∘...(2)From eqn(1) and (2), we getAB=2ACApplying cosine law inΔACD,a2=b2+102−2×b×10×cos60∘⇒a2=b2+100−10b...(3)Applying cosine law inΔABD,(2a)2=(2b)2+102−2×2b×10×cos60∘⇒4a2=4b2+100−20b...(4)From eqn(3) and (4), we geta=5√7,b=15BC=3a=15√7⇒k=15