In a ΔABC,∠ABC=∠ACB and the bisectors of ∠ABC and ∠ACB intersect at O such that ∠BOC= 120∘. Show that ∠A=∠B=∠C=60∘
Given : In△ABC ,BO and CO are the bisectors of ∠B and ∠C respectively and ∠BOC=120∘, ∠ABC=∠ACB
To prove: ∠A=∠B=∠C=60∘
Proof: ∠BOC=90∘+12∠A
But ∠BOC=120∘
∴90∘+12∠A=120∘
⇒12∠A=120∘−90∘=30∘
∴∠A=60∘
∵∠A+∠B+∠C=180∘
(Angles of a triangle)
∴∠B+∠C=180∘−60∘=120∘
and ∠B=∠C
∴∠B=∠C=120∘2=60∘
∠A=∠B=∠C=60∘