Let ∠A=x∘ and ∠B=y∘.
According to the given condition,
∠C=3∠B=(3y)∘.
We know that,
∠A+∠B+∠C=180∘
⇒x+y+3y=180
⇒x+4y=180……(i)
Also,
∠C=2(∠A+∠B).
⇒3y=2(x+y)
⇒2x−y=0……(ii)
Solving (i) and (ii) we get,
x=180−4y [From (i)]
Substituting value of x in (ii),
2(180−4y)−y=0
360−8y−y=0⇒y=40
Now, x=180−4y
x=180−4(40)⇒x=20
⇒x=20,y=40
⇒∠A=20∘,∠B=40∘∠C=(3×40)∘=120∘