Given: A,B,C are in A.P
Hence B=60∘
So, cosB=12=c2+a2−b22ac⇒c2+a2=b2+ac⇒(a−c)2=b2−ac⇒|a−c|=√b2−ac⇒|sinA−sinC|=√sin2B−sinAsinC⇒2cosA+C2∣∣∣sinA−C2∣∣∣=√34−sinAsinC⇒2∣∣∣sinA−C2∣∣∣=√3−4sinAsinC
(∵cosA+C2=cos60∘=12)
Hence, limA→C√3−4sinAsinC|A−C|=limA→C2sin∣∣∣A−C2∣∣∣|A−C|=1