wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In a ΔABC,b=2,c=3,A=30. Evaluate inradius of ΔABC.

Open in App
Solution

Given b=2,c=3,A=30o
Now, cosA=b2+c2a22bc

cos30o=22+(3)2a243

32=4+3a243

7a2=6
a2=1
a=1 (Since, length of side of triangle is positive. )

Now, Inradius r=Δs
where Δ is area of triangle and s is semi-perimeter of triangle.

So, s=a+b+c2
s=1+2+32
s=3+32

Δ=s(sa)(sb)(sc)

Δ= (3+3)2(3+321)(3+322)(3+323)

Δ= (3+3)2(1+32)(1+32)(332)

Δ= 32(3)24((3)2124)

Δ=934(314)

Δ=1216

Δ=32

Substituting the values in the formula of inradius , we get
r=32(3+3)2

r=33+3

r=33+3×3333

r=3(33)93

r=3(31)6

r=312

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties of Angles Formed by Two Parallel Lines and a Transversal
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon