In a ΔABC, bcos(C+θ)+ccos(B−θ)=
The correct option is B.acosθ
In △ABC,A+B+C=π...(i) and
a=2RsinA,b=2RsinB,c=2RsinC...(ii)
Now,
bcos(C+θ)+ccos(B−θ)=R[2sinBcos(C+θ)+2sinCcos(B−θ)] [From (ii)]
=R[sin(B+C+θ)+sin(B−C−θ)+sin(B+C−θ)+sin(C−B+θ)] [Using 2sinxsiny=sin(x+y)+sin(x−y)]
=R[sin(B+C+θ)+sin(B+C−θ)+sin(B−C−θ)+sin(C−B+θ)]
=R[sin(π−(A−θ))+sin(π−(A+θ))+sin(B−C−θ)−sin(B−C−θ)] [From(i)]
=R[sin(A−θ)+sin(A+θ)]
=R[2sinAcosθ]
=(2RsinA)cosθ
=acosθ
Thus, bcos(C+θ)+ccos(B−θ)=acosθ