In a ΔABC, if a cos A = b cos B, show that the triangle is either isosceles or right - angled.
By the sine rule, we have
asinA=bsinB=k(say)
⇒a=k sin A and b=k sin B.
∴a cos A=b cos B
⇒k sin A cos A=k sin B cos B
⇒12(sin 2A)=12(sin 2B)
⇒sin 2A=sin 2B
⇒sin 2A−sin 2B=0
⇒2cos(A+B)sin(A−B)=0
⇒cos(A+B)=0 or sin(A−B)=0
⇒(AB)=π2 or A=B=0
⇒∠C=π2 or A=B.
Hence, ΔABC, is right - angled or isosceles