In a ΔABC, if ∠A=60∘,∠B=80∘ and the bisectors of ∠B and ∠C meet at O, then ∠BOC=___
Given :
In ΔABC,∠A=60∘,∠B=80∘
We know that, sum of the angles of a triangle is 180∘
⇒∠A+∠B+∠C=180∘
⇒∠C=180∘−(∠A+∠B)
=180∘−(60∘+80∘)
=180∘−140∘
∴∠C=40∘
Bisectors of ∠B and ∠C meet O.
In figure,
BO and CO are the bisectors of ∠B and ∠C.
⇒∠BCO=40∘2=20∘
∠CBO=80∘2=40∘
Now, In ΔBOC
∠BCO+∠CBO+∠BOC=180∘ [Angle sum property of triangle]
⇒20∘+40∘+∠BOC=180∘
⇒60∘+∠BOC=180∘
⇒∠BOC=180∘−60∘
⇒∠BOC=120∘
Alternate method:
In a ΔABC, if the bisectors of ∠B and ∠C meet at O, then ∠BOC=90∘+12∠A
⇒∠BOC=90∘+12∠A
=90∘+(12×60∘)
=90∘+30∘
=120∘
∴∠BOC=120∘