In a ΔABC, if ∣∣
∣∣1ab1ca1bc∣∣
∣∣=0, then sin2A+sin2B+sin2C=
A
94
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
49
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
3√3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A94 Given, inΔABC, if ∣∣
∣∣1ab1ca1bc∣∣
∣∣=0 ⇒1(c2−ab)−a(c−a)+b(b−c)=0⇒a2+b2+c2−ab−bc−ca=0⇒2a2+2b2+2c2−2ab−2bc−2ca=0⇒(a2+b2−2ab)+(b2+c2−2bc)+(c2+a2−2ca)=0⇒(a−b)2+(b−c)2+(c−a)2=0 Here, sum of squares of three members can be zero if and only if a = b =c ⇒ΔABC is equilateral ⇒∠A=∠B=∠C=60∘∴sin2A+sin2B+sin2C=(sin260∘+sin260∘+sin260∘)=3×(√32)2=94