In a ΔABC , if cosAcosBcosC=13, then the value of tanAtanB+tanBtanC+tanCtanA is
To find tanAtanB+tanBtanC+tanCtanA
=sinAsinBcosAcosB+sinBsinCcosBcosC+sinCsinAcosCcosA
=sinAsinBcosC+cosAsinBsinC+sinCsinAcosBcosAcosBcosC
=−cosAcosBcosC+cos(A+B+C)cosAcosBcosC
As cos(A+B+C)=sinAsinBcosC+sinAcosBsinC+cosAsinBsinC+cosAcosBcosC
And A+B+C=180⇒cos(A+B+C)=−1
∴−cosAcosBcosC+cos(A+B+C)cosAcosBcosC=−13−1−13=4