In a ΔABC, if cosAcosBcosC=√3−18 and sinA.sinB.sinC=3+√38,
A+B+C=π⇒cos(A+B+C)=cosπ⇒cosAcosBcosC−sinAsinBcosC−cosAsinBsinC−sinAcosBsinC=−1⇒cosAcosBcosC(1−tanAtanB−tanBtanC−tanAtanC)=−1⇒√3−18(1−tanAtanB−tanBtanC−tanAtanC)=−1⇒tanAtanB−tanBtanC−tanAtanC=5+4√3