In a ΔABC, if cos A = sinA2sinC, show that the triangle is isosceles.
By the sine rule, we have
asinA=bsinB=csinC
⇒sinAa=sinBb=sinCc=k(say)
⇒sin A=ka,sin B=kb and sin C=kc.
∴cosA=sinB2sinC⇒(b2+c2−a2)2bc=kb2kc
⇒(b2+c2−a2)=b2
⇒c2=a2⇒|c|=|a|
⇒AB=BC.
Hence, ΔABC. is isosceles.