wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In a ΔABC, if cos C=sin A2 sin B,prove that the triangle is isosceles.

Open in App
Solution

Let sin Aa=sin Bb=sin Cc=k.Then, sin A=ka, sin B=kb, sin C=kcNow, cos C=sin A2 sin B2 sin B cos C=sin A2(a2+b2c22ab)kb=kaa2+b2c2=a2b2=c2b=cΔABC is isosceles.P.Q.cos Ab cos C+c cos B+cos Bc cos A+a cos C+cos Ca cos B+b cos A=a2+b2+c22abcIn any ΔABC, we havea=b cos C+c cos Bb=c cos A+a cos Cc=a cos B+b cos ATherefore,LHS=cos Ab cos C+c cos B+cos Bc cos A+a cos C+cos Ca cos B+b cos A=cos Aa+cos Bb+cos Cc=b2+c2a22abc+a2+c2b22abc+a2+b2c22abc=b2+c2a2+a2+c2b2+a2+b2c22abc=a2+b2c22abc=RHSHence proved.PQ.In a ΔABC, if cos A=sin Bcos C, show that the triangle is a right angled triangle.cos A=sin Bcos C cos A+cos C=sin B 2 cos (A+C2)cos(AC2)=2 sin B2.cosB2 cos(π2B2)cos(AC2)sin B2.cos B2 sin B2cos(AC2)=sin B2.cosB2 cos (AC2)=cos B2 [Dividing both sides by sin B2] (AC2)=B2 [Removing sine from both sides] AC=B A=B+C ...(i)Also, A+B+C =π ...(ii)Solving (i) and (ii), we getA=π2 ΔABC is a right angled triangle.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Sine Rule
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon