In a ΔABC, if cos C=sin A2 sin B,prove that the triangle is isosceles.
Let sin Aa=sin Bb=sin Cc=k.Then, sin A=ka, sin B=kb, sin C=kcNow, cos C=sin A2 sin B2 sin B cos C=sin A2(a2+b2−c22ab)kb=kaa2+b2−c2=a2b2=c2b=cΔABC is isosceles.P.Q.cos Ab cos C+c cos B+cos Bc cos A+a cos C+cos Ca cos B+b cos A=a2+b2+c22abcIn any ΔABC, we havea=b cos C+c cos Bb=c cos A+a cos Cc=a cos B+b cos ATherefore,LHS=cos Ab cos C+c cos B+cos Bc cos A+a cos C+cos Ca cos B+b cos A=cos Aa+cos Bb+cos Cc=b2+c2−a22abc+a2+c2−b22abc+a2+b2−c22abc=b2+c2−a2+a2+c2−b2+a2+b2−c22abc=a2+b2−c22abc=RHSHence proved.PQ.In a ΔABC, if cos A=sin B−cos C, show that the triangle is a right angled triangle.cos A=sin B−cos C⇒ cos A+cos C=sin B⇒ 2 cos (A+C2)cos(A−C2)=2 sin B2.cosB2⇒ cos(π2−B2)cos(A−C2)−sin B2.cos B2⇒ sin B2cos(A−C2)=sin B2.cosB2⇒ cos (A−C2)=cos B2 [Dividing both sides by sin B2]⇒ (A−C2)=B2 [Removing sine from both sides]⇒ A−C=B⇒ A=B+C ...(i)Also, A+B+C =π ...(ii)Solving (i) and (ii), we get∠A=π2∴ ΔABC is a right angled triangle.