The correct options are
A isosceles
B obtuse angled
Given cotA=(x3+x2+x)12=x12(x2+x+1)12
cotB=(x+x−1+1)12=(x2+x+1x)12
cotC=(x−3+x−2+x−1)−12=(x3+x2+1x3)−12=(x3x3+x2+1)12
In triangle ABC,
A+B+C=π
A+B=π−C
tan(A+B)=−tanC
tanA+tanB1−tanAtanB=−tanC
⇒tanA+tanB+tanC=tanAtanBtanC
Converting in terms of cot, we get
cotBcotC+cotAcotC+cotAcotB=1
Substituting the given values,
(x2+x+1x)12(x3x3+x2+1)12+x12(x2+x+1)12(x3x3+x2+1)12+x12(x2+x+1)12(x2+x+1x)12=1
x(x2+x+1x3+x2+1)12+x2(x2+x+1x3+x2+1)12+(x2+x+1)=1
x(x2+x+1x3+x2+1)12(1+x)=−(x2+x)
⎡⎣(x2+x+1x3+x2+1)12+1⎤⎦(x2+x)=0
⇒(x2+x+1x3+x2+1)12=−1;x=0,x=−1
⇒x3−x=0
⇒x=0,1,−1
Only x=1 can be taken, else it will give complex values
∴cotA=√3,cotB=√3 and cotC=1√3
So, the triangle is isosceles