wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In a ΔABC, if cotA=(x3+x2+x)12, cotB=(x+x1+1)12 and cotC=(x3+x2+x1)12 then the triangle is

A
isosceles
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
obtuse angled
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
right angled
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
acute angled
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct options are
A isosceles
B obtuse angled
Given cotA=(x3+x2+x)12=x12(x2+x+1)12
cotB=(x+x1+1)12=(x2+x+1x)12
cotC=(x3+x2+x1)12=(x3+x2+1x3)12=(x3x3+x2+1)12
In triangle ABC,
A+B+C=π
A+B=πC
tan(A+B)=tanC
tanA+tanB1tanAtanB=tanC
tanA+tanB+tanC=tanAtanBtanC
Converting in terms of cot, we get
cotBcotC+cotAcotC+cotAcotB=1
Substituting the given values,
(x2+x+1x)12(x3x3+x2+1)12+x12(x2+x+1)12(x3x3+x2+1)12+x12(x2+x+1)12(x2+x+1x)12=1
x(x2+x+1x3+x2+1)12+x2(x2+x+1x3+x2+1)12+(x2+x+1)=1
x(x2+x+1x3+x2+1)12(1+x)=(x2+x)
(x2+x+1x3+x2+1)12+1(x2+x)=0
(x2+x+1x3+x2+1)12=1;x=0,x=1
x3x=0
x=0,1,1
Only x=1 can be taken, else it will give complex values
cotA=3,cotB=3 and cotC=13
So, the triangle is isosceles

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon