Consider the given
r1=8,r2=12,r3=24
Then we know that, In a ΔABC
1r=1r1+1r2+1r3
1r=18+112+124
1r=3+2+124
1r=624
1r=14
r=4
Now, we know that
Δ2=rr1r2r3
Δ=√rr1r2r3
Δ=√4×8×12×24
Δ=√2×2×2×2×2×2×2×3×2×2×2×3
Δ=2×2×2×2×2×3
Δ=96
Again, we know that
r=Δs
r=96s
4=96s
s=964
s=24
So,
r1=Δs−a=9624−a
8=9624−a
24−a=968
24−a=12
a=12
r2=Δs−b=9624−b
12=9624−b
24−b=9612
24−b=8
b=16
r3=Δs−c=9624−c
24=9624−c
24−c=9624
24−c=4
c=20
Hence, this is the answer.