wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In a ΔABC, lf tanA2 , tanB2,tanC2 are in A.P, then cos A, cos B cos C are

A
in A.P.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
in G.P.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
in H.P.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
not related
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A in A.P.
Given

tanA/2,tanB/2,tanC/2 are in AP

2tanB2=tanA2+tanC2

2⎜ ⎜ ⎜sinB2cosB2⎟ ⎟ ⎟=⎜ ⎜ ⎜sinA2cosA2⎟ ⎟ ⎟+⎜ ⎜ ⎜sinC2cosC2⎟ ⎟ ⎟

2⎜ ⎜ ⎜sinB2cosB2⎟ ⎟ ⎟=sinA2cosC2+cosA2sinC2cosA2cosC2

2sinB2cosA2cosC2=cosB2(sinA2cosC2+cosA2sinC2)

(sin(A+B)=sinAcosB+cosBsinA)

2sinB2cosA2cosC2=cosB2(sinA+C2)

2sinB2cosA2cosC2=cosB2(sinπB2)

2sinB2cosA2cosC2=cosB2cosB2

4sinB2cosA2cosC2=2cos2B2

1+4sinB2cosA2cosC2=2cos2B21

(cos2θ=2cos2θ1andcosA+cosCcosB=1+4sinB2cosA2cosC2)

cosA+cosCcosB=cosB

2cosB=cosA+cosB

cosA,cosB,cosC are in AP

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon