In a ΔABC, lf tanA2 , tanB2,tanC2 are in A.P, then cos A, cos B cos C are
If A+B+C=π then,tanA2⋅tanB2+tanB2⋅tanC2+tanC2⋅tanA2 =
If cos(A−B)cos(A+B)+cos(C+D)cos(C−D)=0, prove that tanA tanB tanC tanD=−1