In a ΔABC, line CD is perpendicular to AB. ∠CAD=45∘ and AB = 20 cm. The area of triangle ABC is 40 cm2. The length of AC will be equal to
Given CD⊥AB,∠CDA=90∘
In ΔADC,
sin 45∘=CDAC
1√2=CDAC
AC=√2 CD ...(i)
Now, area of △ABC=12×AB×CD
⇒40 cm2=12×20×CD
⇒CD=4 cm
On substituting the value of CD in equation (i), we get
AC=√2×4=4√2 cm