In a ΔABC, prove that (b2−c2)cot a+(c2−a2)cot B+(a2−b2)cot C=0.
In ΔABC, by sine rule, we have sin Aa=sin Bb=sin Cc=k
Then, sin A = ak, sin B = bk and sin C = ck
Now, LHS = (b2−c2)cot A+(c2−a2)cot B+(a2−b2)cot C
= (b2−c2)cos Asin A+(c2−a2)cos Bsin B+(a2−b2)cos Csin C
= (b2−c2ka)(b2+c2−a22bc)+(c2−a2kb)(a2+c2−b22ac)+(a2−b2kc)(a2+b2−c22ab)
[∵ using cosine rule, cos A=b2+c2−a22bc, cos B=c2+a2−b22ac and cos C=a2+b2−c22ab]
= 12kabc[(b2−c2)(b2+c2−a2)+(c2−a2)(a2+c2−b2)+(a2−b2)(a2+b2−c2)]
= 12kabc[b4−c4−a2 b2+a2 c2+c4−a4−b2 c2+a2 b2+a4−b4−c2 a2+b2 c2]
= 12 kabc×0=0=RHS
Hence proved.