wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In a ΔABC prove that cosA+cosB+cosC=1+4sinA2sinB2sinC2

Open in App
Solution

Consider the L.H.S

=cosA+cosB+cosC ……………… (1)

We know that

cosC+cosD=2cos(C+D2)cos(CD2)

Therefore,

=2cos(A+B2)cos(AB2)+cosC

Since,

A+B+C=π

cosθ=12sin2θ2

Therefore,

=2cos(πC2)cos(AB2)+12sin2C2

=2cos(π2C2)cos(AB2)+12sin2C2

=2sinC2cos(AB2)+12sin2C2

=1+2sinC2cos(AB2)2sin2C2

=1+2sinC2(cos(AB2)sinC2)

=1+2sinC2(cos(AB2)sin(π2(A+B2)))

=1+2sinC2(cos(AB2)cos(A+B2))

We know that

cosCcosD=2sin(C+D2)sin(DC2)

Therefore,

=1+2sinC2⎜ ⎜ ⎜2sin⎜ ⎜ ⎜AB2+A+B22⎟ ⎟ ⎟sin⎜ ⎜ ⎜A+B2AB22⎟ ⎟ ⎟⎟ ⎟ ⎟

=1+2sinC2(2sin(A2)sin(B2))

=1+4sin(A2)sin(B2)sin(C2)

Hence, proved.


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon