Consider the L.H.S
=cosA+cosB+cosC ……………… (1)
We know that
cosC+cosD=2cos(C+D2)cos(C−D2)
Therefore,
=2cos(A+B2)cos(A−B2)+cosC
Since,
A+B+C=π
cosθ=1−2sin2θ2
Therefore,
=2cos(π−C2)cos(A−B2)+1−2sin2C2
=2cos(π2−C2)cos(A−B2)+1−2sin2C2
=2sinC2cos(A−B2)+1−2sin2C2
=1+2sinC2cos(A−B2)−2sin2C2
=1+2sinC2(cos(A−B2)−sinC2)
=1+2sinC2(cos(A−B2)−sin(π2−(A+B2)))
=1+2sinC2(cos(A−B2)−cos(A+B2))
We know that
cosC−cosD=2sin(C+D2)sin(D−C2)
Therefore,
=1+2sinC2⎛⎜ ⎜ ⎜⎝2sin⎛⎜ ⎜ ⎜⎝A−B2+A+B22⎞⎟ ⎟ ⎟⎠sin⎛⎜ ⎜ ⎜⎝A+B2−A−B22⎞⎟ ⎟ ⎟⎠⎞⎟ ⎟ ⎟⎠
=1+2sinC2(2sin(A2)sin(B2))
=1+4sin(A2)sin(B2)sin(C2)
Hence, proved.