wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In a Δ ABC, prove that sin3 A cos(BC)+ sin3 B cos(CA)+ sin3 C cos(AB)=3sin Asin Bsin C

Open in App
Solution

LHS=sin3Acos(BC)+sin3B(CA)+sin3cos(AB)

=sin2Asin(B+C)cos(BC)+sin2Bsin(C+A)cos(CA)+sin2Csin(A+B)cos(AB) [A+B+C=π]

=12[sin2A(sin2B+sin2C)+sin2B(sin2C+sin2A)+sin2C(sin2A+sin2B)] [sinC+sinD=2sinC+D2cosC+D2]

=22[sin2AsinBcosB+sin2AsinCcosC+sin2BsinCcosC+sin2BsinAcosA+sin2(sinAcosA+sin2CsinBcosB)]

=sinAsinB(sinAcosB+cosAsinB)+sinBsinC(sinBcosC+cosBsinC)+sinCsinA(sinCcosA+cosCsinA)

=sinAsinBsin(A+B)+sinBsinCsinCsinB+C+sin(sinAsin(C+A))

=3sinAsinBsinC=RHS

[A+B+C=πsin(πθ)=sinθ]

Hence, proved


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Area
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon