wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In a Δ ABC, prove that sin4A+sin4B+sin4C=32+2cosAcosBcosC+12cos2Acos2Bcos2C.

Open in App
Solution

L.H.S =(1cos2A2)2+(1cos2B2)2+(1cos2C2)2
=34+14(cos22A+cos22B+cos22C)12(cos2A+cos2B+cos2C)
=34+14{12(1+cos4A)+12(1+cos4B)+12(1+cos4C)}12(cos2A+cos2B+cos2C)
=34+38+18(cos4A+cos4B+cos4C)12(cos2A+cos2B+cos2C)
=98+18[2cos(2A+2B)cos(2A2B)+2cos22C1]12[2cos(A+B)cos(AB)+2cos2C1]
=32+14[cos(2π2C)cos[2A2B)+cos22C][cos(πC)cos(AB)+cos2C]
9818+12=32
[A+B+C=π gives 2A+2B=2π2C and A+B=πC]
=32+14cos2C[cos(2A2B)+cos(2A2B)]cosC[cos(AB)cos(A+B)]
=32+14cos2C2cos2Acos2B+cosC2cosAcosB
=32+2cosAcosBcosC+12cos2Acos2Bcos2C.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon