L.H.S =(1−cos2A2)2+(1−cos2B2)2+(1−cos2C2)2
=34+14(cos22A+cos22B+cos22C)−12(cos2A+cos2B+cos2C)
=34+14{12(1+cos4A)+12(1+cos4B)+12(1+cos4C)}−12(cos2A+cos2B+cos2C)
=34+38+18(cos4A+cos4B+cos4C)−12(cos2A+cos2B+cos2C)
=98+18[2cos(2A+2B)cos(2A−2B)+2cos22C−1]−12[2cos(A+B)cos(A−B)+2cos2C−1]
=32+14[cos(2π−2C)cos[2A−2B)+cos22C]−[cos(π−C)cos(A−B)+cos2C]
∵98−18+12=32
[∵A+B+C=π gives 2A+2B=2π−2C and A+B=π−C]
=32+14cos2C[cos(2A−2B)+cos(2A−2B)]−cosC[−cos(A−B)−cos(A+B)]
=32+14cos2C⋅2cos2Acos2B+cosC⋅2cosAcosB
=32+2cosAcosBcosC+12cos2Acos2Bcos2C.