wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In a ΔABC,sin4A+sin4B+sin4C=

A
32+2cosAcosBcosC+12cos2Acos2Bcos2C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
2cosAcosBcosC+12cos2Acos2Bcos2C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2cosAcosBcosC+12cos2Acos2B
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2cosAcosBcosC+cos2Acos2B
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 32+2cosAcosBcosC+12cos2Acos2Bcos2C

A+B+C=180C=180(A+B)

sin4A+sin4B+sin4C=(1cos2A2)2+(1cos2B2)2+(1cos2C2)2

Direct expansion gives,

sin4A+sin4B+sin4C=3412(cos2A+cos2B+cos2C)+14(cos22A+cos22B+cos22C)

Consider,

(cos22A+cos22B+cos22C)=(1+cos4A2)+(1+cos4B2)+(1+cos4C2)

=32+12(cos4A+cos4B+cos4(A+B))

=32+12(2cos(2(A+B))cos(2(AB))+2cos22(A+B)1)

=1+cos(2(A+B))(cos(2(A+B))+cos2(AB))=1+cos2(A+B)(2cos2Acos2B)

=1+2cos2Acos2Bcos2Ccos2A+cos2B+cos2C=cos2A+cos2B+cos2(A+B)

=2cos(A+B)cos(AB)+2cos2(A+B)1

=4cosAcosBcosC1

sin4A+sin4B+sin4C=34124cosAcosBcosC1)+14(1+2cos2Acos2Bcos2C)

=32+2cosAcosBcosC+12cos2Acos2Bcos2C


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon