In a ΔABC,sin4A+sin4B+sin4C=
A+B+C=180⇒C=180−(A+B)
sin4A+sin4B+sin4C=(1−cos2A2)2+(1−cos2B2)2+(1−cos2C2)2
Direct expansion gives,
sin4A+sin4B+sin4C=34−12(cos2A+cos2B+cos2C)+14(cos22A+cos22B+cos22C)
Consider,
(cos22A+cos22B+cos22C)=(1+cos4A2)+(1+cos4B2)+(1+cos4C2)
=32+12(cos4A+cos4B+cos4(A+B))
=32+12(2cos(2(A+B))cos(2(A−B))+2cos22(A+B)−1)
=1+cos(2(A+B))(cos(2(A+B))+cos2(A−B))=1+cos2(A+B)(2cos2Acos2B)
=1+2cos2Acos2Bcos2Ccos2A+cos2B+cos2C=cos2A+cos2B+cos2(A+B)
=2cos(A+B)cos(A−B)+2cos2(A+B)−1
=−4cosAcosBcosC−1
∴sin4A+sin4B+sin4C=34−12−4cosAcosBcosC−1)+14(1+2cos2Acos2Bcos2C)
=32+2cosAcosBcosC+12cos2Acos2Bcos2C