In a ΔABC, tanA and tanB are the roots of the equation ab(x2+1)=c2x, a, b and c are the sides of triangle, then
abx2−c2x+ab=0
tanA+tanB=+c2ab−(1)
tanAtanB=1−(2) ⇒C=90o
DeltaABC is rightangle triangle.
→ c2=a2+b2
tan(A−B)=(tanA−tanB)(1+tanAtanB)
A+B+C=π
A+B=π2...........(From eq.(2))
tan(A−B)=√(tanA+tanB)2−4tanAtanB1+1
=√(c2a2b2)2−42
=√(a2+b2)2a2b2−42
=a2−b22ab
Also cotC=cot90=1
sinA=ac,sinB=bc
sin2A+sin2B=a2+b2c2=1