In a ΔABC, prove that a(cos C−cos B)=2(b−c)cos2A2.
Let a=k sin Aa(cos C−cos B)=2(b−c)cos2A2LHS=a(cos C−cos B)=a2.sinC+B2.sinB−C2=2k sin A sinπ−A2.sinB−C2=2k2 sinA2.cosA2.cosA2.sinB−C2=2K2 cos2A2(2sinB−C2.sinA2)=2k cos2A2(2sinB−C2.sinπ−(B−C)2)=2K cos2A2(sin B−sin C)=2 cos2A2 (k sin B−k sin C)=2 cos2A2 (b−c)=RHS.