In a ΔABC, the internal angle bisector of ∠ABC meets AC at K. If BC=2,CK=1 and BK=3√22, then the length of side AB is:
Open in App
Solution
Using cosine law in ΔBKC, cosB2=4+184−12⋅3√22⋅2 ⇒cosB2=3+926√2=1512√2=54√2
We know, internal angle bisector, BK=2aca+ccosB2=2⋅2⋅2m2m+2⋅54√2 ⇒3√22=4mm+1⋅54√2 ⇒6(m+1)=10m⇒m=32 ∴AB=2m=3