The correct option is B 2
We have ∠A=30∘+45∘=75∘
So, ∠C=180∘−(75∘+B)
⇒∠C=105∘−B
In ΔABD,
BDsin30∘=ADsinB⇒BD=AD2sinB⋯(i)
In ΔADC,
CDsin45∘=ADsinC⇒CD=AD√2sin(105∘−B)⋯(ii)
Now, BD=CD
⇒AD2sinB=AD√2sin(105∘−B)
⇒√2sinB=sin(105∘−B)
⇒√2sinB=sin105∘.cosB−cos105∘.sinB
⇒√2sinB=√3+12√2cosB+√3−12√2sinB
⇒4sinB=(√3+1)cosB+(√3−1)sinB
⇒cotB=3√3−4⇒sinB=12√11−6√3
Hence BC=2BD=ADsinB=2√11−6√3√11−6√3=2