In a , AD is the bisector of ΔABC, meeting side BC at D. If AB = 10 cm, AC = 6 cm, BC = 12 cm, find BD.
In ΔBADandΔDAC,∠BAD=∠DAC∠ABD=∠ACD
[sinceADiscommon,anglesoppositeequalsidesareequal].
Hence the triangles are similar by AA.
So, ACAB=DCDB⟹610=12−xx⟹6x=120−10x⟹16x=120orx=7.5.
Hence BD = 7.5cm.