wiz-icon
MyQuestionIcon
MyQuestionIcon
6
You visited us 6 times! Enjoying our articles? Unlock Full Access!
Question

In a flower bed, there are 43 rose plants in the first row, 41 in the second, 39 in the third, and so on. There are 11 rose plants in the last row. How many rows are there in the flower bed?

Open in App
Solution

The numbers of rose plants in consecutive rows are 43, 41, 39,..., 11.
Difference of rose plants between two consecutive rows = (41 - 43) = (39 - 41) = -2 [Constant]
So, the given progression is an AP.
Here, first term = 43
Common difference = -2
Last term = 11
Let n be the last term, then we have:
Tn = a + (n - 1)d
⇒ 11 = 43 + (n - 1)(-2)
⇒ 11 = 45 - 2n
⇒ 34 = 2n
⇒ n = 17
Hence, the 17th term is 11 or there are 17 rows in the flower bed.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Form of an AP
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon