Let the 5 terms in geometric progression be
ar2,ar,a,ar,ar2
Now given that
Product of these numbers =1
i.e., ar2×ar×a×ar×ar2=1
a5=1
a5=15
⇒ a=1
and
sum of first 3 terms =74
i.e., ar2+ar+a=74
a+ar+ar2r2=74
4(a+ar+ar2)=7r2
But a=1
∴ 4(1+1r+1r2)=7r2
Or, 7r2−4r2−4r−4=0
3r2−4r−4=0
Solve by factorisation method
3r2−4r−4=0
3r2−6r+2r−4=0
3r(r−2)+2(r−2)=0
(r−2)(3r+2)=0
⇒ r−2=0 or 3r+2=0
r=2 or 3r=−2
r=−23
∴ Common ratio of geometric progression be =r=2 or −23