The corresponding T3 and T7 of AP are, T3=7,T7=5
d=Tp−Tqp−q=T7−T37−3=5−74=−24=−12
∴d=−12
Consider T3 of the corresponding AP
T3=7
a+2d=7⇒a+2(−12)=7
a−1=7
∴a=8
To find T15,Tn=a+(n−1)d
T15=8+(15−1)(−12)
T15=8+14(−12)
T15=8−7=1
In A.P., T15=1
⇒ Corresponding T15 of the H.P., T15=1