In a H.P, tn = 1n . The Harmonic mean of first 10 terms of H.P is
2/11
Given tn = 1n
⇒ 1, 12, 13,--------- forms H.P.
H.M. of n positive numbers xn, x2,----------- xn is,
H.M. = n1x1+1x2+.......+1xn
Hence, H.M. of given H.P. = 101+2+3+......+10
= 10×210×11 [∑ n = n(n+1)2 ]
= 211
Short cut:- If a1, a2,----------- an form H.P.
H.M. of all 'n' terms = 2a1ana1+an
Here a1 = 1 an = 110 hence H M = 2×1101+110 = 211