1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Condition for Two Lines to Be Parallel
In a parallel...
Question
In a parallelogram ABCD, the bisectors of angles at B and C intersect each other at point E. Prove that angle BEC is equal to a right angle.
Open in App
Solution
G
i
v
e
n
A
B
C
D
i
s
a
p
a
r
a
l
l
e
l
o
g
r
a
m
.
∠
B
&
∠
C
a
r
e
a
d
j
a
c
e
n
t
a
n
g
l
e
s
i
n
t
h
e
p
a
r
a
l
l
e
l
o
g
r
a
m
s
o
,
∠
B
+
∠
C
=
180
0
⇒
∠
B
=
180
0
−
∠
C
−
−
−
(
1
)
G
i
v
e
n
t
h
a
t
E
B
&
E
C
a
r
e
a
n
g
l
e
b
i
s
e
c
t
o
r
s
f
o
r
∠
B
&
∠
C
r
e
s
p
e
c
t
i
v
e
l
y
.
S
o
,
∠
E
B
C
=
1
2
∠
B
&
∠
E
C
B
=
1
2
∠
C
N
o
w
i
n
△
B
E
C
,
∠
E
B
C
+
∠
E
C
B
+
∠
C
E
B
=
180
0
⇒
1
2
∠
B
+
1
2
∠
C
+
∠
C
E
B
=
180
⇒
∠
C
E
B
+
1
2
(
∠
B
+
∠
C
)
=
180
⇒
∠
C
E
B
+
1
2
×
180
=
180
0
{
f
r
o
m
(
1
)
}
⇒
∠
C
E
B
+
90
0
=
180
0
⇒
∠
C
E
B
=
90
0
⇒
∠
C
E
B
i
s
a
r
i
g
h
t
a
n
g
l
e
.
Suggest Corrections
0
Similar questions
Q.
Prove that in a parallelogram the angle bisectors of two adjacent angles intersect at right angle.