In a parallelogram ABCD, the diagonals bisect each other at O. If ∠ABC=30∘,∠BDC=10∘and∠CAB=70∘.
Find: ∠DAB,∠ADC,∠BCD,∠AOD,∠DOC,∠BOC,∠AOB,∠ACD,∠CAB,∠ADB,∠ACB,∠DBC and ∠DBA.
In parallelogram ABCD, diagonal AC and BD bisect each other at O.
∠ABC=30∘,∠CAB=70∘ and ∠BDC=10∘,
∠ADC=∠ABC=30∘, (Opposite angles)
and ∠ADB=∠ADC−∠BDC=30∘−10∘=20∘
∵ AB||DC and AC is the transversal
∴∠ACD=∠CAB=70∘ (Alternate angles)
AB ||DC and BD is transversal
∴∠CDB=∠ABD=10∘ (Alternate angles)
In ΔABC
∠CAB+∠ABC+∠BCA=180∘
(Sum of angles of a triangle)
⇒70∘+30∘+∠BCA=180∘⇒100∘+∠BCA=180∘∠BCA=180∘−100∘=80∘∴∠BCD=∠BCA+∠ACD=80∘+70∘=150∘
∴∠BCD=∠DAB (Opposite angles)
⇒∠DAB=150∘
and ∠CAD=150∘−70∘=80∘
(Angles of a triangle)
⇒∠ACD+∠ACD+∠COD=180∘⇒70∘+10∘+∠COD=180∘80∘+∠COD=180∘⇒∠COD=180∘−80∘=100∘∴∠COD=100∘
But ∠AOD+∠COD=180∘ (Linear pair)
⇒∠AOD+100∘=180∘
⇒∠AOD=180∘−100∘=80∘⇒∠AOD=80∘
But ∠AOB=∠COD and ∠BOC=∠AOD
(Vertically opposite angles)
∴∠AOB=100∘and∠BOC=80∘
Hence ∠DAB=150∘,∠ADC=30∘,∠BCD=150∘∠AOD=80∘ ∠DOC=100∘∠BOC=80∘ ∠AOB=100∘∠ACD=70∘,∠CAB=70∘,∠ADB=20∘,∠ACB=80∘∠DBC=20∘,∠DBA=10∘