wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In a parallelogram ABCD, the diagonals bisect each other at O. If ABC=30,BDC=10andCAB=70.

Find: DAB,ADC,BCD,AOD,DOC,BOC,AOB,ACD,CAB,ADB,ACB,DBC and DBA.

Open in App
Solution

In parallelogram ABCD, diagonal AC and BD bisect each other at O.


ABC=30,CAB=70 and BDC=10,
ADC=ABC=30, (Opposite angles)
and ADB=ADCBDC=3010=20
AB||DC and AC is the transversal
ACD=CAB=70 (Alternate angles)
AB ||DC and BD is transversal
CDB=ABD=10 (Alternate angles)
In ΔABC
CAB+ABC+BCA=180
(Sum of angles of a triangle)
70+30+BCA=180100+BCA=180BCA=180100=80BCD=BCA+ACD=80+70=150
BCD=DAB (Opposite angles)
DAB=150
and CAD=15070=80
(Angles of a triangle)
ACD+ACD+COD=18070+10+COD=18080+COD=180COD=18080=100COD=100
But AOD+COD=180 (Linear pair)
AOD+100=180

AOD=180100=80AOD=80
But AOB=COD and BOC=AOD
(Vertically opposite angles)
AOB=100andBOC=80
Hence DAB=150,ADC=30,BCD=150AOD=80 DOC=100BOC=80 AOB=100ACD=70,CAB=70,ADB=20,ACB=80DBC=20,DBA=10


flag
Suggest Corrections
thumbs-up
36
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties of Parallelograms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon