In a parallelogram OABC, vectors →a,→b,→c are respectively the position vectors of vertices A, B, C with reference to O is origin. A point →E is taken on the side BC which divides it in the ratio of 2 : 1. Also, the line segment AE intersects the line bisecting the angel O internally in point P. If CP, when extended meets AB in point F. Then
The position vector of point F is
→a+13|→a||→c|→c
→r1=→c+ λ1[{3|→a||→c|3|→c|+2|→a| }{→a|→a|+→c|→c|}−→c].....(i)
Vector equation of line AB⇒→r=→a+λ2→c..........(ii)
These two lines intersect at F, we must have for F.
→c+ λ1[{3|→a||→c|3|→c|+2|→a| }{→a|→a|+→c|→c|}−→c]=→a+λ2→c
⇒[3|→a||→c|3|→c|+2|→a|.1|→a|−1]→a+[1+3λ1|→a|3|→c|+2|→a|−λ1−λ2]→c=0
⇒3|→c|λ13|→c|+2|→a|−1=0
and 1+3λ1|→a|3|→c|+2|→a|−λ1−λ2=0 [∵→a and →care non-collinear]
⇒λ1=3|→c|+2|→a|3|→c| and λ2=13|→a||→c|
Putting value of λ1 in (ii), we get →r=→a+13|→a||→c| →c