In a plane stress problem, there are normal tensile stresses σxandσywithσx>σy, accompanied by shear stressτxy at a point in the x-plane. If it is observed that the minimum principal stress on a certain section is zero, then
τxy=√σx⋅σy
σ1,2=(σx+σy2)±√(σx−σy2)2+τ2xy
It is given that minimum principal stress on a section is zero.
Therefore, σ2 = 0
⇒(σx+σy2)−√(σx−σy2)2+τ2xy=0
⇒(σx+σy2)=√(σx−σy2)2+τ2xy
Squaring both sides
⇒(σx+σy2)2=(σx+σy2)2+(τxy)2
⇒τxy=√σx.σy