In a quadrilateral ABCD, AO and BO are bisectors of angle A and angle B respectively.
Show that :
∠AOB=12(∠C+∠D)
Given : AO and BO are the bisectors of ∠A and ∠B respectively.
∴∠1=∠4 and ∠3=∠5........(i)
To Prove : ∠AOB=12(∠C+∠D)
Proof : In quadrilateral ABCD ∠A+∠B+∠C+∠D=360o12(∠A+∠B+∠C+∠D)=180o .....(ii)Now inΔAOB∠1+∠2+∠3=180o .......(iii)Equating equation (ii) and equation (iii), we get∠1+∠2+∠3=∠A+∠B+12(∠C+∠D)∠1+∠2+∠3=∠1+∠3+12(∠C+∠D)∠2=12(∠C+∠D)∴∠AOB=12∠C+∠D
Hence proved.