In a quadrilateral ABCD,∠B=90°, AD2=AB2+BC2+CD2, prove that ∠ACD=90°.
Prove of the given result ∠ACD=90°
AD2=AB2+BC2+CD2.........(1)
∠ABC=90°
In ∆ABC, using Pythagoras theorem, [∵∠ABC=90°]
⇒AC2=AB2+BC2.......(2)
Putting value in (1) from (2)
⇒AD2=AC2+CD2
∴∆ACDfollows Pythagoras theorem
So,∆ACDis a right angle triangle, right angled at C.
∴∠ACD=90°
Hence,it is proved that ∠ACD=90°.
In a quadrilateral ABCD, ∠B=90∘,AD2=AB2+BC2+CD2, prove that ∠ACD=90∘
In a trapezium ABCD, if AB || CD then (AC2+BD2) = ?
(a) BC2+AD2+2BC.AD
(b) AB2+CD2+2AB.CD
(c) AB2+CD2+2AD.BC
(d) BC2+AD2+2AB.CD