In a quadrilateral ABCD, bisectors of A and B intersect at O such that ∠AOB=75∘, then write the value ∠C+∠D.
In quadrilateral ABCD,
Bisectors of ∠A and∠B meet at O and ∠AOB=75∘
In AOB , ∠AOB=75∘
∴∠OAB+∠OBA=180∘−75∘=105∘
But OA and OB are the bisectors of ∠A and ∠B.
∴∠A+∠B=2×105∘=210∘
But ∠A+∠B+∠C+∠D=360∘ (Sum of angles of a quad.)
∴210∘+∠C+∠D=360∘
⇒∠C+∠D=360∘−210∘=150∘
Hence ∠C+∠D=150∘