In a quadrilateral ABCD, CO and DO are the bisector of ∠C and ∠D respectively.
Prove that ∠COD=12(∠A+∠B).
In quad. ABCD,
CO and DO are the bisectors of ∠C and ∠D respectively.
In ΔCOD,∠DCO+∠CDO+∠COD=180∘ (Sum of angles of a triangle)⇒12∠C+12∠D+∠COD=180∘⇒∠COD=180∘−(12∠C+12∠D)=180∘−12(∠C+∠D)But ∠A+∠B+∠C+∠D=360∘⇒∠C+∠D=360∘−(∠A+∠B)∴∠COD=180∘−12[360∘−∠A−∠B]=180∘−180∘+12(∠A+∠B)=12(∠A+∠B)
Hence proved