wiz-icon
MyQuestionIcon
MyQuestionIcon
14
You visited us 14 times! Enjoying our articles? Unlock Full Access!
Question

In a quadrilateral ABCD, the diagonals AC, BD, intersect at right angles. Prove that:
AB2+CD2=BC2+DA2

Open in App
Solution

In AOB,
AB2=OA2+OB2 ......(1)

In COD,
CD2=OC2+OD2 .....(2)

In OAD,
DA2=OA2+OD2 ......(3)

In BOC,
BC2=OC2+OB2 ......(4)

Adding 1 & 2, we get,
AB2+CD2=OA2+OB2+OC2+OD2 ....(5)

Adding 3 & 4 , we get,
DA2+BC2=OA2+OB2+OC2+OD2 ......(6)

Form 5 & 6, we get,
AB2+CD2=BC2+DA2



1285822_1382758_ans_5e6ea36934c24fa583a0dee4f49f2c4e.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Rhombus
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon